Multifunctions of wetland systems - Legnaro (Padova) 26 – 29 June 2007

Estimation of the performance of an experimental FWS wetland in the Venice Lagoon watershed

Dr. Favero L.¹, Ing. Comola G.², Dr. Franco D.¹, Dr. Mattiuzzo E.¹

¹ Planland, Venice - Italy; - ² Protecno Srl, Padova - Italy

Research founded by the Ministry of Infrastructures – Venice Water Authority through its concessionary Consorzio Venezia Nuova

Contest: the Venice Lagoon watershed

• Risk of eutrophication

- Wetlands as nonpoint-source pollution control tools planned in:
 - "General Plan of Interventions 1992", Ministry of Infrastructures – Venice Water Authority;
 - "Master Plan 2000" for nutrient load abatement, Veneto Region.

planland 📟 studio tecnico daniel franco

The "Canale Novissimo" wetland

Venice

• Experimental FWS wetland• established to

- monitor nonpoint-source pollution abatement performance
- define the parameters of a first-order model under <u>local</u> environmental conditions (Kadlec and Knight, 1996)

 ...achieve the knowledge needed to design a full-scale wetland.

Plant characteristics

- Main hydraulic factors controlled (flow, salinity, water stage, detention time)
- Three ecosystems: meandering riparian swamp (I), riparian and wet (II), and marsh ecosystem (III)

Design parameters:

- Flow max in/out: 0.1 m³ s⁻¹
- Main volume: 30000 m³

Monitoring design:

• free-water samples every 18 d

50 m wide, 4140 m long, mean depth 80 cm.

s = sampling points.

Detention Time [d]								
Tot	1 Eco	2 Eco	3 Eco					
14	3	5	6					
7	2	2	3					
5	1	2	2					

DT	Main flow	Incoming concentrations [mg L ⁻¹]				
	[m³ s-1]	TN	TP	SS		
14	29 x 10 ⁻³	1.41	0.13	65		
7	46 x 10 ⁻³	1.81	0.06	32		
5	47 x 10 ⁻³	1.73	0.06	47		

Wetland performances

• Mass Removal Rate $MRR [kg d^{-1}] = M_{in} - M_{out},$

• Percent Mass Removal $PMR = \frac{(m_{in} - m_{out})}{m_{in}} \times 100$

M = mass input or output rate [kg d⁻¹] m = mass load [kg]

First order areal model

• Three methods used to estimate the removal rate constant:

$$\ln\!\left[\frac{Co-C^*}{Ci-C^*}\right] = \frac{k}{q}$$

- input/output data, averaged k: k calculated over 3*DT and then averaged over the whole period;
- input/output data, calibrated k-C*: k and C* calibrated over the whole period by means of the Generalized Reduced Gradient (Excel Solver routine).

Kadlec & Knights, 1996 Rousseau et al., 2004; Carleton, 2002; Carleton et al., 2001

$$\ln\left[\frac{Cy-C^{*}}{Ci-C^{*}}\right] = \frac{k}{q}y$$

transect data: k estimated by means of regression analysis.

- K = removal rate constant [m d⁻¹]
- Co = output concentration [g m^{-3}]
- Ci = inlet concentration [g m⁻³]
- C* = background concentration [g m⁻³]

- q = hydraulic loading rate [m d^{-1}].
- y = x/L = fractional distance from the inlet
- x = distance from the inlet [m],
 - = wetland length [m]
- Cy = concentration at the y point [g m^{-3}]

- o The 3 methods led to similar values
- The obtained k are comparable with literature constants, despite low mass loading rates

	TN	N-NH ₄	N-NO ₃	TN	N-NH ₄	N-NO ₃
References	LR [kg h ^{a–1} d ^{–1}]			k [m yr−¹]		
This study	0.4	0.1	0.2	52	34	74
Arheimer and Wittgren, 2002	102			40		
Kallpar and Wittaran 2001		3.6			8	237
Rainer and Willyren, 2001		3.4	6.7		36	29

- Wetlands could be effective also with low inlet concentrations, typical of the reclaimed network:
 → removal rates and removal rate constants are comparable with literature data.
- Wetland efficiency increases with detention time \rightarrow as observed in other wetlands.
- The whole wetland performs better than the simpler units.
- Calibration of the removal rate constants using different approaches led to comparable results
 → several ways to estimate reliable model parameters;

→The values obtained could be used in the future to design full scale wetlands in the Venice lagoon watershed.

planland 👓 studio tecnico daniel franco

Thank you for your attention

www.planland.org

www.protecno.it

studio@danielfranco.org